A HIS-GIS for 200 Years of Belgian Territorial Structures (1796-2000)

Ghent University
History Department
Blandijnberg 2
9000 Gent
Belgium

Martina.Demoor@rua.ac.be
Torsten.Wiedemann@rug.ac.be

VERY CONCISE POLITICAL HISTORY OF BELGIUM

- 18th c.: Austrian Habsburg reign
- 1795: annexation of Austrian Netherlands to France
- 1796: introduction of French territorial structures in Belgium
- 1815: « Battle of Waterloo » => Annexation of Belgium to Kingdom of the Netherlands
- 1830: Belgian revolution => foundation of the Belgian state in 1831

WHAT IS A TERRITORIAL STRUCTURE?

- The total of subdivisions of a territory
- Distinct separate territorial units with different functions in society: administrative, political, judicial, economic, ...
- Demarcated units -> boundaries
- Hierarchically structured: from nation to municipality
- Subject to change over time
- Composite units can change without affecting the boundaries of their parts
- The parts can have boundary changes without affecting the composition of the composite units

WHY STUDY THE EVOLUTION OF THE TERRITORIAL STRUCTURES?

- For an accurate analysis and presentation of statistical data
- Territorial units formed the basis for the collection of census data (National Institute for Statistics-NIS)
- Analysis on different levels of aggregation
- Analysis for different periods in time: longitudinal and diachronical analysis
=> Long-term geographical analysis is possible
- As a research topic in itself (nation building processes etc.)
- Archival purposes

EVOLUTION OF THE BELGIAN TERRITORIAL STRUCTURE

- Administrative and judicial units
- Before 1796:

1. Counties/Duchies
2. Seignouries
3. Villages

- From 1796 onwards:

1. Departments
2. Districts
3. Cantons
composite units
4. Municipalities \rightarrow basic units of

EVOLUTION OF THE BELGIAN TERRITORIAL UNITS

	French period $(1796-1815)$	Dutch period $(1815-1830)$	Belgian period (since 1830)
1.	9 départements	9 provinces	$9 / 10$ provinces
2.	44 judicial arrondissements 92 administrative arr.	44 judicial arrondissements 61 administrative arr. (1823)	44 judicial arrondissements 61 administrative arr.
3.	278 municipal cantons (administr. until 1800) 275 judicial cantons (after $1800)$	275 judicial cantons	275 judicial cantons
4.	Continuously changing number of municipalities		

Total number of municipalities

GOALS OF THE PROJECT

1. Reconstruction of the Belgian territorial structure since the end of the AR
2. Collect historical attribute data which give an extra dimension to the territorial structure
3. Make collected data available for research, education, public services, ...

1. RECONSTRUCTION OF THE TERRITORIAL STRUCTURE

- Geometric data:
- Boundaries of territorial units
- Qualitative attribute data
- Gazetteer of territorial units
- Hierarchy of territorial units: data on functions of and relations between units
- Evolution of territorial units: data on foundation, abolition and change
- Composition of territorial units: data on enlargement and reduction

2. THE ATTRIBUTE DIMENSION

- Quantitative attribute data
- Digitised censuses on different levels (primarily municipality level) for the whole of the area for different moments in time
- Qualitative attribute (meta)data
- Meta-data: data on method of collection, digitisation,historical critique of censuses
- Georeferenced maps: topographical maps,...
- Geocoded object data: raster objects (legal texts, orthophotos, maps), historical websites,...

3. USING THE DATA

- Easy-to-use interface
- Access via Internet
- Interactive: add your own data, make your own queries and maps
- For different target groups: researchers, students, teachers, genealogists,...

STARTING POINT OF PROJECT (1)

- A large collection of geographical data:
- Geometric data: vectorised Lambert-coordinates of the boundary changes of most important territorial units for the period 1801-1991
- Attribute data: all on the municipal level (not lower)
- Quantitative data: digitised census data for period 17961991
on population, agriculture, industry, ...
- Qualitative data: detailed data on the geographic evolution, name, hierarchy and composition of territorial units, metadata

STARTING POINT OF PROJECT (2)

- A simple structure (no G.I.S.) using cartographic codes and a concordance table to link spreadsheets with base-maps
- Usage of different software packages
- A complex and difficult-to-use tool for longitudinal analysis of statistical data and cartographic presentation of these data

ORIGINAL STRUCTURE

PROBLEMS (1)

- Limited analysis possibilities and update difficulties
- Polygons exist independent of each other which makes diachronic analyses difficult
- Excessive number of layers/polygons (high redundancy+unreliable)
- Conversion is necessary and cumbersome

PROBLEMS (2)

- Map units could not be integrated with topographical maps (Lambert-coordinates but map units in kilometres)
- Access by external users difficult
- Complexity structure
- No guidance
- Limited infrastructure

SOLUTIONS

- Relational database: data ordered in normalised tables
- Build a G.I.S.: bring geometric data (polygons) in relation to each other
! Difficulty: both attribute data and territorial units change over time and at different time periods/points!
- Use least common geometries method (LCGmethod) to build map of smallest map units
- Transformation of map units into meters
- Use integrated software (MS Access + Arcview)
- Access via user-friendly interface

NEW STRUCTURE

RDBMS

Content tables:
NIS code \rightarrow multir-
Temporal validity Link table:
of attributes map code $->$ multiple
Variable value \rightarrow NIS code $\rightarrow>$ multiple
Temporal validity of terr. units/polygons

Chronon: 1 day

MAP METHOD

- Originally: simple layer model:

New polygons with new ID-codes for every new form of a territorial unit

- New method: from spaghetti map to least common geometries map*:

1. Time slices of layer model are overlayed =>spaghetti-file
2. Intersection of all spatial objects (polygons) => new objects => map of smallest map units
3. New layers are made by activating right objects

- Types: space-time-composite with polygons or with lines
*Ott \& Swiaczny, Time-integrative GIS, 2001

Map of least common geometries

Perimeter
X-coordinates
Y-coordinates

LINKING DATABASE WITH MAP

FILTER QUERY (municipalities)

Veld:	KAART_CODE	\cdots	NIS_CODE	MOD_NAAM	BEGIN	EINDE
Tabel:	voorbeeld		voorbeeld	tbl_nis_gem	voorbeeld	voorbeeld
Totaal: Sorteervolgorde: Weergeven:	Group By		Group By	Group By	Group By	Group By
	\checkmark		\square	\square	\square	\square
Criteria:					< $=1990$	$>=1990$
Of:						

link table

KAART_CODE	NIS_CODE	BEGIN	EINDE	
31005 d		340050	1796	1960
31005 d		31005 A	1960	2000
$3100 \mathrm{~F} a$		31006 A	1796	2000
3	31006 C	1796	1960	
3	Multiple	31006 A	1960	2000
31006 e	31006 E	1796	1960	
31006 e	31006 A	1960	2000	
31006 f	31006 F	1796	1960	
31006 f	31006 A	1960	2000	
31029 x	31005 E	1796	1960	
31029 x	31006 A	1960	2000	
31029 z	31005 E	1796	1960	
31029 z	31005 A	1960	2000	

Results query 1950

$\begin{aligned} & \text { KAARI_CODE } \\ & 31005 d \end{aligned}$	$\frac{\mathrm{N}}{31}$ Unique	U-NAAM	BEGIN	EINDE
		Ue kerke	1796	1960
311 Results query 1990		Damme	1796	2000
		$\rightarrow 0$ Multiple	- 796	1960
3. KAART_COD	NIS_COD		EGIN	EINDE
$331005 d$	31005A	Brugge	1960	- 2000
331006a	31006A	Damme	1796	- 2000
331006 c	31006A	Damme	1960] 2000
31006 e	31006A	Damme	1960	- 2000
31006f	31006 A	Damme	1960	2000
31029x	31006A	Damme	1960	- 2000
31029z	31005A	Brugge	1960	- 2000

ADVANTAGES OF LCG-METHOD

- Spatially and temporally reliable
- Can generate boundaries for each given time point
- Covers time slices and continual records of change
- No redundant information
- Can be implemented with each layer GIS
- High versatility and flexibility of analysis

Example 1

The evolution of the boundaries of
the administrative arrondissements for the province of West-Flanders

RELATIONSHIPS BETWEEN TABLES

Table arrondissements

Table of municipalities

31009 A	MOD_NAAM
31005 B	Mannekensverre
31005 C	Oedelem
31004 A	Sint-Joris
31004 B	Blankenberge
31005 A	Uitkerke
31005 A 29	Brugge
31005 B	Sint-Pieters-op-de-Dijk
31005 C	Lissewege
31005 D	Dudzele
31005 E	Koolkerke
31005 F	Sint-Kruis
31005 G	Assebroek
31005 H	Sint-Michiels
31006 A	Sint-Andries
31006 C	Damme
31006 C 1	Oostkerke
31006 D	Hoeke
31006 E	Lapscheure

link table of municipalities/arrondissements

link table of municipalities/map | NIS_CODE | KAART_CODE | BEGIN | EINDE |
| :--- | :--- | :--- | :--- |

NIS_CODE	KAART_CODE	BEGIN	EINDE
31003 A	31003 a	1796	2000
31003 B	31003 h	1796	1970
31003 A	31003 b	1970	2000
31003 C	31003 c	1796	1970
31003 A	31003 c	1970	2000
31004 A	31004 a	1796	2000
31004 B	31004 b	1796	1970
31004 A	31004 b	1970	2000
31005 B	31005 a	1796	1950
31005 A	31005 a	1950	2000
31005 B	31005 b	1796	1970
31005 A	31005 b	1970	2000
31005 C	31005 c	1796	1970

e.g. 1960
e.g. 1990

SELECT ARR. 1820

SELECT ARR. 1960

Example 2

Population density in West-Flanders between 1846 and 1991
(on municipality level)

Table of municipality names

NIS	MOD_NAAM
35029	De Haan
38025 K	De Moeren
38008 A	De Panne
34009 A	Deerlijk
37002 A	Dentergem
34040 C	Desselgem
33011 H	Dikkebus
32003 A	Diksmuide
54007 D	Dottignies
330392	Dranouter
31005 C	Dudzele
350 VbB	Eernegem
37011 B	Egem

Table of population (absolute fig.)

NIS	AANTAL	TIJD
31005 C	2025	1856
31005 C	2259	1930
31005 C	2120	1880
31005 C	2028	1846 D
31005 C	2116	1876
31005 C	1268	1806
31005 C	2049	1961
31005 C	2063	1890
31005 C	1687	1830
31005 D	892	1920
31005 D	922	1831
31005 D	815	1930
31005 D	671	1800

link table municipalities/map, 1846

kaart code	MOD_NAAM	tijd-begin	tijd-einde
33011 h		Dikkebus	1796
32003 a		Diksmuide (Dixr	17950
54007 d		Dottignies (Dotte	1796
33039 e		Drantutiter	1850
34015 i	Dudzele	1796	1850
31005 c	Dudzele	1796	1850
31005 j	Dudzele	1796	1850
31044 i	Dudzele	1796	1850
35006 b	Eernegem	1796	1850
37011 b	Egem	1796	1850
38025 d	Eggewartskape	1796	1850
33011 f	Elverdinge	1796	1850

Table of area of polygons

Calculation of population density

Area in 1846 = som of polygons: 28.44 km² Population in $1846=2028$ Density = 2028/28.44 = 71.31 inh./km ${ }^{2}$

SELECT POP. 1846

Eile Edit Yiew Iheme Graphics Window Help

a．view2

Example 3

Show topographical map and orthophoto for Bruges

SELECT OBJECT

因Start| 园 ©

INTERFACE

- Distribution of data
- Collection of data
- Access via internet
- Special viewer for MS-Access and Arcview
- ArclMS-server
- Restricted access? Copyright?

POSSIBLE CRITIQUE

- Flexibility can be enhanced: Instead of map layers ("complex" maps/simple database): spatial databases (more complex database /simpler maps)
- User can use and enter data but not changethe structure of database

FUTURE PERSPECTIVES

- Add more data on all territorial levels
- Extension in time: link to Ancien Regime
- Linkage with datbases of public services
- Integration into a historical data and metadata archive for geographical and non-geographical historical data

