
http://fas.harvard.edu/~chgis 

 
 
China Historical GIS Spatio-Temporal Database and Web Implementation 
 
Merrick Lex Berman  -  August 2001 

 
 

1. CHGIS Database Design 
2. Implementation Problems 
3. Tracking Spatio-temporal Entities 
4. Web Implementation of Spatio-Temporal Searches & Mapserver 

 
 
1.  CHGIS Database Design 
 
 The draft Spatio-Temporal Database Design, by Lawrence Crissman (Griffith 
University), called for the construction of relational tables in a row-versioned database.1  
The primary objective of the database was to identify historical administrative units in 
China, and to show both their hierarchical relationships within the Chinese administration 
and their changes over time.   It was proposed that each change of any particular unit be 
reflected in the database by the addition of a new row, with beginning and ending dates 
recording the temporal extent of the unit during one “instance.”  Although the database 
design sought to keep track of various attributes of the records as needed in related tables,  
there were three fairly fundamental issues that needed to be addressed: 
 

(a) redundant storage of attributes for each level in the administrative hierarchy 
(b) use of hierarchical geocodes  (which cannot easily handle multiple parents) 
(c)  inability to add intervening levels into the hierarchy without requiring excessive 

renumbering of child unit geocodes, or necessitating the re-organization of the 
database to accommodate new levels in the hierarchy 

 
 

In terms of redundant storage of attributes, the original database design called for 
the entry of both the Romanized and Chinese placenames for EACH level in the 
adminstrative hierarchy for EVERY row.  In other words, the record for  Huangzhai Township 
(located in Yangqu County, Taiyuan Municipality, Shanxi Province,) would have to include  
all of these names and their units in separate fields.  A partial list is seen in Figure 1. 

 
 

 
 
 
Figure 1:  Administrative Hierarchy Attributes for a single record 

 
The strategy was to include the information in the tables while organizing each 

record into the appropriate place in the administrative hierarchy, then to assign a specific 
historical administrative code for each level in the hierarchy, so that the text entries 
could be swapped out for the codes.  Using Guobiao codes2 as an example, the code might 
consist of three levels with two-digits each.  Shanxi Province = 14, Taiyuan = 01, and 
Yangqu = 22.  The  Huangzhai Township record could then be recorded in an abbreviated 
format, by referring to its higher level units, as in Figure 2. 



http://fas.harvard.edu/~chgis 

 
 

 
 

Figure 2:  Replacing redundant entries with adminstrative codes  
 

The use of historical administrative codes represents a considerable savings in 
tablespace, but also leads us to the second issue, which is that we can only use this coding 
method to define a single inflexible hierarchy.  In dealing with historical geography, we may 
not always be working within the official administrative hierarchy of a single regime…indeed, 
as in the case of China, we may need to describe many competing claims on geographic and 
political space, even though the actual control of the contested space may not have 
belonged to either side.  For example, we might have the case of the Dali Kingdom, which 
existed independently for many centuries, fighting wars with both Chinese and Tibetan 
states, while all three laid claims to the same territory.   
 
 Let us suppose that China had a nominal claim to an administrative office, Dali Xian, 
located under the nominal jurisdiction of Yunnan Fu.  Following the previous example, we 
might have the administrative attributes and codes shown in Figure 3. 
 
 

 
 
 

Figure 3: Example of adminstrative codes for Dali Xian, during the Qing Dynasty 
 
 
However, the Dali Kingdom might refer to the same place as Yangjuhu, a city in the Dali 
Kingdom…and, of course, they might not be referring to the same space, but a different 
somewhat overlapping area.  We would have to compile a separate set of administrative 
levels for each case of overlap, in this case, we could create a parallel hierarchy, as shown 
in Figure 4. 
 
 
 

 
 

Figure 4: Parallel administrative hierarchy 
 



http://fas.harvard.edu/~chgis 

Then we need a workaround table that shows which units in one hierarchy are related to 
units in the other hierarchy, as in Figure 5. 
 

 
 

FIGURE 5: Alternate Hierarchy Table linking units in parallel hierarchies 
 
Although this will allow us to discover the alternate hierarchies it is quite cumbersome to 
keep track of, and it reveals a serious issue that cannot be resolved:  the need to allow for 
creation of new, intervening levels in the administrative hierarchy. 
 
 The coding system described up to this point relies on the idea of setting up a known 
number of levels in the administrative hierarchy in advance of entering information into the 
database.  If, at any point, we discovered a NEW level that must be placed between any two 
existing levels, it would require the renumbering of ALL the RECORDS in the database, from 
the intervening level down to the lowest level in the hierarchy.   For example, Figure 6 
demonstrates that if we had to create an intervening level between Dali Kingdom and 
Yangjuhu, that would force a new level to be placed in the Yunnan Fu – Dali Xian 
relationship also. 
 
 

 
 

Figure 6:  Creating new levels in the administrative hierarchy forces renumbering 
 
Such a massive reorganization of the database, precipitated by the discovery of new 
information is clearly unacceptable.   In the next section we will look at specific problems 
encountered in the database implementation and the reasons why the database has been 
redesigned according to a simpler part-whole relationship model. 
 
 
 
2. Implementation Problems. 
 

During the initial data collection and data entry stage, undertaken by a team of 
researchers at the Center for Historical Geography (Fudan University),3 the entry of 
redundant administrative hierarchy information into spreadsheets proved to be fairly 
tedious, although it did have the advantage of allowing for a visual verification of the 
hierarchical attributes.  See for example the table in Figure 7. 
 



http://fas.harvard.edu/~chgis 

 
 
Figure 7:  Redundant entry of administrative level information   

 
 Note the columns in the center, for Dynasty and Province, which were redundant for 
this entire file.  As we began to assemble files for the Qing Dynasty, the need for reducing 
tablespace and eliminating redundancy became more pronounced.  Although the use of a 
code number to replace the text strings in each of the administrative hierarchy fields would 
have saved some disk space, it did not deal with the inherent redundancy of storing all of 
the hierarchical level values for each record.  The idea of maintaining exact coded 
equivalents for each of the administrative hierarchy levels was utilized in the coding system 
for the China Historical GIS developed by the late Robert Hartwell.4   
 

 
 
 
 Figure 8:  Hartwell administrative coding 
 
 

An example of Hartwell’s table is shown in Figure 8, showing seven records with 
ambiguous placenames but completely different positions in the administrative hierarchy.   
The units are clearly and easily differentiated using Historical Administrative Codes, shown 
on the bottom half of Figure 8.  The advantage of using unique codes for disambiguation of 
placenames works perfectly in the Hartwell datasets, which are limited to single slices in 
time, and which are kept in separate files for each Dynasty.  However,  when we introduce 
multiple temporal instances of each unit, and must allow for creation of additional 



http://fas.harvard.edu/~chgis 

intervening hierarchical levels as they are discovered, the use of the fixed number of fields 
and concatenated historical codes becomes overly complex.  
 

The construction and syntax of the hierarchical coding system was originally 
conceived of as a tool for uniquely identifying an instance of a particular historical unit, not 
only in terms of its administrative rank, but also the spatial data version, and temporal 
sequence.  It was proposed that each value would be held separately in its relevant field, 
but that these would all be concatenated into a single string, that could act as a unique ID 
for the historical instance and its spatial representation of any particular unit.  The idea was 
to have “one unique code assigned to each historical instance of an administrative unit.”  
The resulting code was to have looked something like the string shown in Figure 9. 

 
 

 
 
  Figure 9:  Concatenated Historical Administrative Code 
 

According to Crissman’s proposal, the first two postions “Za” would be used to 
indicate the Dynastic Period, and then a series of two digit codes would be used for each 
level in the adminstrative hierarchy, alternating from numerical two-digit codes, to 
capitalized two-letter alphabetic codes, back to two-digit codes, then to lower-case 
alphabetic codes, and so on, down to the lowest level needed.  Crissman also proposed 
removing the codes for internening levels that had NULL values, as in the example where 
“acBA” have no intervening numeric code.  In addition to the administrative coding system, 
brackets were proposed to contain references to Spatial Data Versions, as in “SV2” and 
Variants “V3,” where for example, a particular subset of the spatial data had several 
different possible variants even within the same overall spatial dataset. 
 

Finally, Crissman proposed to keep track of the temporal instance of the changes in 
the historical place entities as a number following the brackets.  Crissman proposed that the 
actual temporal sequence could be reflected in this decimal by using intervening decimal 
values.   For example, if we had temporal instances 1, 2, 3, and needed to add an 
intervening unit between 2 and 3, we could use 2.5.   Later, if a new instance needed to be 
added between 2 and 2.5, we could use 2.3, and so on, ad infinitum. 
 
 Although some deal of time was spent trying to modify and redesign the proposed 
coding system, when it came to implementing any type of codes into RDBMS, there was no 
way to justify burdening the database developers and the users with such a complicated 
and awkward scheme.  Despite the simplicity and convenience of using geocodes in certain 
situations, my own conclusion was that there were simpler and better ways to keep track of 
the same information.   
 

First, the idea of using such a long and absurdly complex code as the unique ID for 
each record had to be thrown out.  There was no reason to use ANYTHING except auto-
incremented unique KEY_ID numbers for each record in the database.  The idea of trying to 
parse and autocheck the weird and complex administrative codes, which might typically be 
25 to 30 characters long was ridiculous.  Since we only expect to have about 100,000 or 
fewer records in the first implementation, a simple auto-incremented KEY-ID would be no 
more than six digits, and could be EASILY checked to see if there were any duplicates or 
missing numbers in the sequence.  As for the attribute information, such as spatial data 



http://fas.harvard.edu/~chgis 

versions, or beginning and ending dates, they should be kept in their own fields.  Since the 
unique KEY_ID will identify each historical instance, there is no need to create artificially 
coded values for any of these attributes. 

 
Second, the hierarchical coding implied knowing what the top level was in every 

case.  For example, if we started the first level with a code indicating the Dynasty, then all 
of the subsidiary units must lie within the spatial and temporal bounds of the Dynasty.  This 
will suffice only so far as we agree on the adminstrative history of a particular 
dynasty…whereas, in fact, the beginning and ending years of Dynasties do not always 
coincide.  One Dynastic clan might cling on for years or decades with various territorial 
claims and strategems, in which case the OVERLAP from the top level unit of one Dynastic 
hierarchy to another would have to be artificially bridged.  The Alternate Hierarchy Table, 
suggested above, is one solution, but why not simply use the same device in the form of a 
part-whole relational model, which would allow us to redefine our hierarchies however we 
like?   

 
The part-whole model is essentially a way to indicate which records are PART-OF 

some other units, using a many-to-many table.  In this case, there is no need for specific 
hierarchical codes, and each record can simply be given an auto-incremented randomly 
generated unique identifier, or KEY_ID.   In practice, the part-whole model would look like 
the example in Figure 10, where Dali is shown as part of Yunnan, and Yangjuhu is shown as 
part of Dali Kingdom. 

 

 
 
 
Figure 10:  Part-Whole relationship model 

 
 Now let’s consider how we could take advantage of this model to redefine a hierarchy 
using a separate many-to-many table.  For instance, let’s just take a look at some places in 
Shanxi Province, shown in the part-whole model in Figure 11. 
 



http://fas.harvard.edu/~chgis 

 
 

 Figure 11:  Shanxi Province – Part-Whole model 
 
 Here we see that Taiyuan, Datong, Yangquan, and Changzhi, are all “part-of” Shanxi 
Sheng, in other words immediately subordinate to Shanxi in the administrative hierarchy.  
Pingding and Yu Xian are also shown to be immediately under Yangquan Shi; while 
Changzhi, Lucheng, and Xiangyuan counties are all under Changzhi Shi.  The latter three 
units are not shown as explicitly subordinate to Shanxi, but a query of their parent unit and 
on up the chain will reveal the administrative hierarchy. 
 
 
 
 
3.  Tracking Spatio-Temporal Entities 
 
 Now let us turn to the problem of tracking changes in records over time.  Based on 
the example shown in Figure 11, imagine that we wanted to redefine the Shanxi hierarchy 
based on our own definition of religious sect activity rather than administrative divisions.  
Perhaps there was a secret society called the Red Mustachios, wildly popular in Lucheng, 
Pingding and Datong, but practically unseen in the rest of Shanxi.  Any record in our 
database can be easily rearranged in a related table, as shown in Figure 12. 
 
 

 
 
 Figure 12:  Example of a user-defined Alternate Group Table 
 
 
 This type of User-Defined Alternate Group Table can easily sort and discover 
relationships between existing records in the database.  The same solution would apply to 
units that spanned from one dynasty to another, since there is no limit to placing another 



http://fas.harvard.edu/~chgis 

higher level unit above any other.  But what if, instead of defining higher order groups of 
smaller units, we want to add an intermediate unit into the hierarchy?  After all, the addition 
of intervening units, either in spatial terms or temporal terms, is an essential flexibility that 
we must build into the database.  Unfortunately, if an intervening level is added into the 
database, we cannot avoid renumbering CHILD units.    In fact, there seems to be no way 
around this problem.   
 

Basically, the issue is this:  let us suppose that we discover  a particular date when 
the Red Mustachios split into two different sub-sects —the Northern Sect,  which controlled 
Datong, and the other, the Southern Sect, controlling both Pingding and Lucheng.  If we 
need to differentiate between the earlier incarnation of the UNITED sect, and the later 
development of the SPLIT sect, we must DUPLICATE and RENUMBER the records in our 
database, as shown in Figure 13. 
 
 
 

 
 

Figure 13:  Need to create new records when hierarchy changes 
 
 
Here you can see that the addition of an intervening level necessitated some crucial 
changes: 
 

(a) a new record had to be added to define the UNITED sect, before the split 
 
(b) the CHILD units of the UNITED sect had to have their ENDED dates and their 

PART-OF-GROUP IDs updated to reflect the ENDING of their former UNITED 
identity 

 
(c) new SUB-SECT records had to be created for the NORTHERN and SOUTHERN 

sects 
 

(d) the original CHILD units had to be DUPLICATED and renumbered as CHILD units 
of the new SUB-SECTS   

 
 



http://fas.harvard.edu/~chgis 

The preceding scenario is a good example of our spatio-temporal entity problem.  In a 
nutshell, we must determine a way to capture the smallest atomic units, both spatially and 
temporally, in the database, and enable them to be split or merged into new units without 
having to restructure the database.  Therefore, although we are giving up some table space 
by the creation of new rows in the database whenever a change occurs, the adoption of the 
part-whole model instead of the historical administrative coding model is the more viable 
alternative.  After all, the new rows are created, but the only MANDATORY attribute needed 
to define any record’s place in the administrative hierarchy is the “part-of” field, which 
represents a many-fold savings of disk space.  The original administrative coding model 
called for ten administrative levels to be defined, so we are saving many times the disk 
space that would have been required to store the codes. 
 
 Early on in the discussion of the database design, Prof. G. William Skinner strongly 
advised us to focus on tracking settlements purely by location, rather than their 
administrative status at any particular date.5  The idea was that we must have a method of 
easily discovering the history of a particular place across time, regardless of it various roles 
in the historical records.  Even though a particular county office might be established 
somewhere, and then later abolished, re-established, moved to a new location, then 
relocated back to the original place, we can assume (lacking any evidence to the contrary) 
that the human settlement and the local people at the original location carried on with their 
daily lives throughout the entire parade of administrative changes, affected by but not 
entirely dependent on what the authorities did.   
 

To expedite the tracking of settlements we proposed the use of a “Site-Code” which 
was essentially the lat – long coordinates of the settlement, as derived from the 
contemporary locations in the ArcChina populated places point coverage.6  The coordinates 
were to be concatenated together, with a prefix to indicate the origin of the spatial data, for 
example “AC” meaning the point was based on an existing record in ArcChina, or “FD” for 
points added by the researchers at Fudan University.   

 
 

 
 
 
Figure 14:  Site Codes 

 
 
 In Figure 14 we see an example showing two historical instances in our database 
which were established at the same location.  Regardless of how many different instances 
there might be in the database for Cheli or Jinghong, they could all be easily discovered 
using the Site Code.  As we assembled the data, the actual coordinates were entered in 
separate fields, and in the end, there seemed to be no advantage in creating the 
concatenated code for this purpose either.  We decided to keep the coordinates separate, 
which is much more useful for a number of reasons, and to keep track of the Spatial Data 
Source in a separate field, as in Figure 15. 
 
 
 
 



http://fas.harvard.edu/~chgis 

 
 
 Figure 15:  Site locations defined by coordinates 
 
  
 Now that our database model includes a unique ID for each historical instance of a 
place, as well as a coordinate location, and temporal span (using beginning and ending 
dates), we can begin to think about how we want to define our spatio-temporal queries.  
But first, let us step back a pace and try to determine exactly what we need to query and 
what we are defining as an historical instance.   
 
 We set out to capture each change of any particular historical administrative unit in 
the database by the addition of a new row, with beginning and ending dates recording the 
temporal extent of the unit during one “instance.”   But what changes are we tracking and 
what constitutes a change necessitating the creation of a new row in the database?  
Furthermore, what constitutes a particular “historical administrative unit?” 
 
 It will be better to broaden the scope of the database, and to think of the 
administrative units being tracked as one of many possible types of “entities.”  Our 
database model is an attempt to keep track of the processes of change that transform these 
entities across time.  Since the process is continuous and our information rather incomplete, 
the best we can hope to do is to create records for instances, or “snapshots,” of the objects 
that define the entity at known points in time, while allowing for new intervening records to 
be introduced later on in case we discover some more information.  As for the objects that 
define the entity, they are made up of spatial, temporal, and thematic attribute sets.7    
 
 Each one of our database records might also be thought of as event-driven 
instances.  In other words, the creation of a new record in the database, must be predicated 
upon a particular event that changed one of the objects defining our entity.   The entity can 
be thought of as the sum of a series of instances over time, each instance being triggered 
by some kind of event.  In this sense the entity spans the entire temporal extent of all its 
component instances, just as there must be a spatial extent that includes all the spatial 
features contained in the dataset. 
 
 For each instance, what should be held as the determining factor in creating a new 
instance?   Should we accept changes in location, area, name, administrative status, and 
feature type as events that would cause creation of a new instance?    Should one event be 
considered primary, enough to create a new instance,  while changes of the other attributes 
be secondary events, and kept track of in tables related to a single instance?  How we 
answer these questions will determine the nature of the entity that we are trying to 
describe. 
 
 
 If we take spatial changes as primary, we might start out with a scenario as shown 
in the left half of Figure 16 at Time 1.  The spatial change occurs at Time 2, when polygon 
523 expands and acquires and area formerly part of polygon 524.  (The red dashed line 
indicates the old boundary.)  
 
 



http://fas.harvard.edu/~chgis 

 
 

Figure 16:  Time One – Spatial Changes as primary events 
 
In this case we would have to create two new instances in the database, because both 523 
and 524 have changed.  In our spatial dataset, we have chosen to implement the space-
time composite model, in which separate polygons are stored, then reassembled to form a 
time-specific coverage as needed.8  This model is based on exhaustive spatial coverage, 
with new spatial objects created for changes in existing spatial objects only.  In order to 
recompose polygons based on particular units at a particular slice in time, we begin with a 
base map that was created as a complete representation of the basic spatial topology for 
the desired region.  Then the changes are followed forwards or backwards in time as 
needed, to locate the set of spatial objects needed to represent our selected features for the 
specific slice in time. In the previous example, the polygons for TIME 2 would be discovered, 
then the arc separating the two polygons with the same KEY_ID would be removed (the 
dotted red line in Figure 17). 
 

 
 
 

Figure 17:  Space-time composite model 
 



http://fas.harvard.edu/~chgis 

 
 Now the question is, what if, in between Time 1 and Time 2, in other words, BEFORE 
the event that forced us to create an instance for Time 2, the administrative area 
represented by polygon 524 had a change in placename?  Let’s say previously it was called 
Pingding, and subsequently it was called Luqiao.  Should we create a new instance, or 
should we create tables to keep track of thematic attributes (such as placename) as 
temporally definable sub-events?  If we chose to keep track of such sub-events, our Time 1 
polygon 524 instance, would have two independent timelines, one for the entire instance, 
and one to keep track of name changes, as illustrated in Figure 18. 
 

 
 

Figure 18:  Tracking independent timelines if allowing sub-events 
 
 
If other attributes, such as adminstrative status, and feature type, are also allowed to 
change WITHIN a single instance, then the parallel timelines not only begin to populate, but 
they do so completely out of synchronization.  There is no reason to think that name 
changes will automatically occur at the same time as administrative status changes, or 
feature type changes, although it is possible.  The problem with allowing this sort of 
temporal diversity is that we can no longer match one instance with its object’s attributes 
without doing additional temporal queries any possible sub-events.   How would a query for 
places named “Pingding” with the administrative status of “Fu” be accomplished if we were 
to follow the precedent of spatial changes as the primary event for new instances, as shown 
in Figure 19? 
 



http://fas.harvard.edu/~chgis 

 
Figure 19:  Multiple timelines for sub-events 

 
Here the problems become obvious.  Pingding may have had a name change to Luqiao, then 
back to Pingding again.  Meanwhile, the administrative status may have continued as Fu all 
along, until the second Pingding was suddenly demoted to a Xian.  Finally, Pingding’s name 
was changed again to Baoding, which kept the status of Xian, and incidentally, kept both 
this status and name forward into the next instance, created by the spatial event shown in 
Figure 16.  This patchwork of parallel and unsynchronized attribute data is simply going to 
play hell with our SQL. 
 
 We may someday be able to create object orientated databases to take care of this 
type of problem for us, but for time being I propose that the database model be 
implemented with attributes frozen for each instance.  By knowing in advance that the 
attributes for a particular instance will not be changing for the duration of the temporal 
extent of the instance, we gain two key advantages:  first, our queries and reporting 
processes are infinitely simpler; and second, we can re-organize the database according to 
any of the attributes as a primary factor, by re-assembling the instances for which 
preceding and subsequent units had the same attribute.  This is demonstrated in Figure 20. 
 

 
 

Figure 20:  Each Instance with frozen attribute values 
 



http://fas.harvard.edu/~chgis 

By holding attributes frozen for each instance we will greatly simplify our query 
processes.  A hit on Instance C will be able to retrieve its Name (Pingding), Adminstrative 
status (Fu) and Polygon (524), without any additional sorting or sub-querying.    Certainly 
in the future we will find other attributes that may overlap the instances in the model we 
have adopted here, but as long as we give equal weight to spatial data change, name 
change, and feature type change (in this example, administrative status is the feature 
type), we should have considerable flexibility.  Furthermore, since we still do not know 
exactly which factor is determining our definition of “entity” that we want to keep track of, 
the division of the instances into the basic spans of time in between each event, allows us to 
create our own event specifications, just as we did for user-defined groups.   

 
For example, if one researcher was primarily interested in administrative status, a 

table could be assembled by regrouping the basic instances according to admin status.  
Meanwhile another researcher who was only interested in spatial changes, could easily trace 
unchanged polygons and group them together using a relational table.  This flexibility for 
the end-user should be sufficient reason to adopt the frozen attribute model for each 
temporal instance.   

 
Now, assuming that we have implemented the database along the “instance with 

frozen attributes” model, we will immediately discover that the beginning and ending dates 
for each instance become the major dependency.9  This poses a serious obstacle since 
historical records are notoriously vague and contradictory when it comes to exact dates.  
Let’s take an example: we know that there are instances A, B, C, and D, and that they 
certainly occurred in this sequence.   However, we have only a beginning date for A and D, 
and ending dates for C and D.   Our uncertainty is depicted in Figure 21. 

 

 
 
Figure 21:  Beginning and Ending Date uncertainty 
 

One way to deal with this problem is to utilize the Temporal Sequence Table, which was 
originally proposed in the Crissman Database Design to keep track of the sequence of units 
as they changed over time.  The idea is to define a unit as “PrecededBy” another unit.   In 
this way we could keep accurate track of temporal sequence, without having to define 
exactly the temporal extent.  Also, in order for temporal searches to discover the correct 
units, I propose that we use a combination of the next available preceding beginning 
date, and or the next available subsequent ending date, together with an uncertainty 
flag, here shown as “*.”  The basic idea is shown in Figure 22. 
 



http://fas.harvard.edu/~chgis 

 
 

 Figure 22:  Showing Uncertain Temporal Sequence 
 

 
In this example, we might search for units that were extant in the year 850.  The results of 
our query would include instances A, B, and C, and would also tell us that the beginning 
dates for B and C are uncertain, as are the ending dates for A and B.  Even so we would be 
able to discover all of the units based on temporal search, including instance B, which has 
no recorded temporal extent at all! 

 
Now that we’ve put together the major building blocks of our spatio-temporal database, let’s 
turn to the issues surrounding querying the CHGIS datasets over the Internet. 
 
 
3.  Web Implementation of Spatio-Temporal Searches & Mapserver 
 
 
 Although the CHGIS project is focussed on the production of the GIS datasets 
themselves, one of my priorities has been to develop a web-implementation that will allow 
users to browse and query the datasets over the Internet.  In the designing the web 
interface, my priorities were to: 
 

a. not require any installation of software, except for standard browsers, such as 
Netscape and Internet Explorer 

 
b. use encodings and font sets that are easy to install and use with the standard 

browsers 
 

c. allow the users to search by placename, administrative areas, feature type, and 
by time 

 
d. enable the user to preview the spatial data by using a webmap server 

 
e. avoid overly-complex webpages to speed up the query response time 

 
 
By implementing an easy to use web interface, I hoped to enable a wide audience to access 
the data as a reference tool, and by including the webmaps, users could get a sense of what 
the CHGIS datasets contain before downloading the actual datasets for their own use.  
Numerous studies of Internet usage have shown that delays of more than several seconds 
for page requests will drive users away from a website.  Therefore, I knew perfectly well 
that very very few potential users would bother to spend hours downloading the CHGIS data 
just to see what the contents were like.  Whereas, a fast preview of the data, with a limited 
range of search criteria, would be much more likely to engage users and provide them with 



http://fas.harvard.edu/~chgis 

samples of the data contents.  In short, the web implementation emphasized speed, 
simplicity, and consistency, over extensive user customization and analytical functions. 

 
 The general overview of the web implementation is shown in Figure 23. 
 

 
 

 Figure 23:  Overview of CHGIS Web Implementation 
 
 
Users simply go to the CHGIS website.  Search engines are available as forms that 

pass input variables to PHP scripts.  The PHP scripts connect to, and pass queries to a 
MySQL database running on a dedicated server.  The results of the search are sent back to 
the user’s browser as ordinary HTML.  However, embedded in the HTML are links which can 
send additional PHP requests to MySQL, or can send CGI calls to Mapserver, also running on 
the same dedicated server.   A typical webform is shown in Figure 24, for searching 
contemporary Provinces, Prefectures, and Counties (circa 1991). 

 
 



http://fas.harvard.edu/~chgis 

 
 

 Figure 24:  Counties Search Form 
 
The results appear as a list of hits, which contain embedded calls for additional searches.  
For example, if we searched for the placename “Baisha” we would get results as shown in 
Figure 25. 
  
 

 
 

Figure 25:  Results of Counties Search 
 



http://fas.harvard.edu/~chgis 

Note the links that appear as “Search Harvard Map Collection” and “Search Harvard 
Yenching Library.”  These links are composed on the fly as part of the PHP script, and create 
a new request to different datasets based on some input variables that were found during 
the preceding search…in this case, the provinces.  So if we were to continue to by clicking 
on the first link, we would automatically search the holdings of the Harvard Map Collection 
for “Hainan,” the location of the first Baisha record.  The output is shown in Figure 27. 

 

 
 
 Figure 27:  Map collection search results 
 
The first of four records in the map collection show a series of maps published in 

1935.  There are twelve actual map sheets in the series, at a scale of 1:190,000.   Note the 
link at the bottom, which is yet another embedded query, this time a CGI call to Mapserver.  
In this case, the map collection dataset contains a specific geographic extent, in the form of 
bounding box coordinates, and when the user clicks on the link, those maximum north, 
south, east, and west coordinates are sent to Mapserver, which zooms in to that extent 
using contemporary 1992 county boundary maps, as shown in Figure 28. 

 
 



http://fas.harvard.edu/~chgis 

 
 
 

Figure 28:  Webmap of Hainan  
 

Note the small guide map of China on the lower right.  A red bounding box indicates the 
extent of the featured map.  This interface allows for zooming in or out, and querying 
features to see the attribute data contained in the underlying GIS shapefiles.  If for 
example, we selected “Query Feature” from the top right, then used the mouse to click on 
the county shown at the bottom of the Hainan map, “Sanya Shi,” we would see the results 
shown in Figure 29. 
 

 
 

Figure 29:  Results of “Query Feature” on webmaps 



http://fas.harvard.edu/~chgis 

 
 
 The method of producing embedded calls to PHP and CGI are shown in Figures 30 
and 31. 
 

 
 

Figure 30:  Embedded PHP calls 
 

 
 

Figure 30:  Embedded CGI calls to Mapserver 
 
  



http://fas.harvard.edu/~chgis 

Mapserver is quite versatile and easily customizable using an HTML template for 
output.  This has the advantage, not only of designing the look of the output, but also 
allowing us to call the correct Character Set Encoding.   Similarly, the output of the feature 
queries are sent to the user as HTML, allowing us to choose the character set (as in Figure 
29, showing BIG5 output). The screen shown in Figure 28 is the default template, but we 
can also redesign the output to suit our needs.  For the Qing 1820 placename search, I have 
actually embedded two separate calls to Mapserver and output them to a table along with 
the attributes found in the MySQL database.   For one call the location of the point for 
“Sanya” is shown in the context of the complete 1820 Qing Dynasty province map, as 
shown on the right in Figure 32. 

 

 
 
Figure 32.  CHGIS Qing Dynasty, 1820, placenames webmap 
 

For the second call, the mapserver zooms in to the geographic extent of the Province 
containing Sanya, which during the year 1820 was Guangdong, as shown on the left of 
Figure 32. 

 
In order to create the two separate views, I first generated a maximum extent 

bounding box for each Province polygon in the 1820 GIS coverage.  The bounding box 
coordinates were then entered into four separate fields in a related province  extent table, 
as in max_west, max_south, max_north, max_east.  This table is then joined to the table 
containing all the individual records in the database on the fly for each PHP query.  When 
querying the MySQL database, whenever there is a hit, the the latitude - longitude 
coordinates for the found record are used to draw the point on the national level map (right 
side), then the bounding box values from the  JOINED province extent table are used to 
ZOOM IN to the extent of the correct province (left side).  Finally the point is drawn a 
second time on the province level map. 

 
The mapserver is configured with three map layers.  The top layer is the points layer, 

which is blank by default, but allows the drawing of the points on the fly, based on the 



http://fas.harvard.edu/~chgis 

latitute – longitude coordinates sent as variables in the CGI call (shown in Figure 31).  The 
middle layer contains the boundaries of all Qing 1820  Provinces.  The bottom layer contains 
the Qing 1820 Fu boundaries.  There is a MAXIMUM visible scale limitation on the Qing 1820 
Fu boundaries layer, so that when the national map on the right is drawn, the Fu layer is 
not seen, but for any of the Province level ZOOMs on the left, the Fu layer is visible and is 
autolabeled. 
 
 Since the demonstration dataset contains only data for the year, or temporal slice, of 
1820, the search engine does not include a temporal search.  However, a working example 
of temporal searching for the web implementation has been completed.  The temporal 
search is based on entering a single date as an input variable.  This date is first checked 
against “Beginning Date” fields in the database to make sure that the input date is equal to 
and greater than the Beginning Date.  Then the input date is also checked against the 
“Ending Dates” field to make sure that the input date is NOT greater than the ending date.   
 
 
 The SQL used is essetially as follows: 
 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>code sample start 
 

if (empty($year) ) 
{$eyear = '25000';} 
else {$eyear = $year;} 
 
if (empty($year) ) 
{$byear = '-2500000000';} 
else {$byear = $year;} 
 
SELECT DISTINT FROM temporal_data 
 
WHERE (end_date <= '$eyear' OR end_date = ' ' ) 
   
AND (begin_date >= '$byear' OR begin_date = ' ' ) 

 
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>code sample end 
 
The first two clauses just arbitrarily set a beginning and end year for blank entries to 2.5 
billion years BCE and 25,000 CE.  This assumes that there will be no entries in the database 
earlier or later than those two years.  These could easily be changed, of course.  Note that 
there is actually only one year being input by the user, and the variable is renamed to be 
BOTH $eyear and $byear, then passed to the query. 
 
The SELECT section just checks the input year against both beginning and ending years in 
the database.  A working sample of this script is posted at:  
http://www.dbr.nu/vortex/test/dig_gaz/dig_gaz3.html 
 
 
 Finally, the web implementation must deal with the issue of discovering parent and 
child units as necessitated by the part-whole relationship model.  This requires a looped 
search, which we have provisionally solved using PHP.  The idea is to define some units as 
parents in the administrative hierarchy, using the partOf model, as illustrated in Figure 33. 
 
 

http://www.dbr.nu/vortex/test/dig_gaz/dig_gaz3.html


http://fas.harvard.edu/~chgis 

 
 
 Figure 33:  Simple Administrative Hierarchy defined by PartOf field 
 
Here we see that Nanjiang is part of Baozhong, which is part of Sichuan.  Sichuan has no 
entry in the PartOf field, which means it is at the top of the hierarchy.  Therefore our search 
for the parents of Nanjiang must first discover the parent #502, then search in the KEY_ID 
column to find 502 and search for its parent, and so on, until a blank value in the PartOf 
field is found, which stops the search loop. 
 
A provisional solution is shown in the following sample code:10 
 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>code sample start 
 

if ($row = mysql_fetch_array ($result) )  
{  
 do {  

 
 $loop = $row["PartOf"];  
 print $row["Name"];  
 if($loop != "") 
 
  { 
   $result = mysql_query (" 
    select * 
    from datafile 
    where Key_ID = '$loop'  
   "); 
 
  $loop = $row["PartOf"];  
       
  } 
 
} while($row = mysql_fetch_array($result)); 

 
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>code sample end 
 

Basically the idea is for the value in PartOf to be passed back and searched 
repeatedly in the key_id field by declaring it as a variable: $loop.  As long as $loop doesn’t 
return as null it keeps going. 

 
The results can be formatted to look something like: 
 
 Nanjiang Xian 
  Baozhong Diqu 
   Sichuan Sheng 
 

See also the working sample at:  http://www.dbr.nu/vortex/partof/partOf_test3.php 



http://fas.harvard.edu/~chgis 

 
 

 
 Certainly the database model and web implementation for CHGIS described here has 
much room for improvement.  Hopefully, the problems and solutions described here will be 
of some use to others working on similar projects, and can lead to further research on 
spatio-temporal querying, visualization, and information discovery and exchange among 
distributed databases.  In particular, CHGIS would now like to focus on several areas: 
 
 To develop a means of comparing and retrieving data based on identified historical 
administrative divisions from distributed archives, such as the historical search engines of 
Academia Sinica. 
 
 To develop a means of visualizing spatial and temporal uncertainty, based on arc 
segments coded with uncertainty values or approximate date values. 
 
 To develop a means of incorporating specialized research by individuals (who make 
use of CHGIS as a basemap) into the datasets accessible to CHGIS users. 
 
 To develop a way to visually compare CHGIS layers with other datasets, perhaps 
with the help of TimeMap software.11 
 
 
During the next two years, with continued support from Henry Luce Foundation, we expect 
that working models for all four of these research areas can be put into use, while we 
continue to push the CHGIS datasets backwards in time. 
 
 
Notes: 
 

1. Crissman, Lawrence.  “Draft Database Design and Geocoding System.”  CHGIS, Dec 
2000.  http://www.people.fas.harvard.edu/~chgis/work/design/chinastdb_1210.doc 

 
2. Guobiao Codes are the National Standard Codes for Administrative Divisions of 

China, also known by their publication name “GB 2260.”  For more info on Guobiao 
Codes see:  Berman, M. “Guobiao Code Extensions,” Feb 2000, 
http://dbr.nu/data/pubs/papers/lex_may00.pdf 

 
3. Fudan University, Center for Historical Geography, CHGIS Staff, see:  

http://fas.harvard.edu/~chgis/work/docs/fudan_staff.jpg 
 

4. Robert Hartwell’s Historical GIS, see paper: Bol, Peter.  “Overview of Work on an 
Historical GIS of China.” Jan 2000.  
http://fas.harvard.edu/~chgis/data/pubs/Bol_Hartwell_GIS.doc 
See also Hartwell GIS Datasets:  http://fas.harvard.edu/~chgis/data/hartwell/ 
 

5. See also Skinner’s Qing Macroregional Analysis:  http://qing.ucdavis.edu 
 

6. ArcChina, the official basemap for the CHGIS project, is available from ESRI.  See: 
http://gisstore.esri.com/acb/showdetl.cfm?&DID=6&Product_ID=309&CATID=15 

 
7. A very thorough model for spatio-temporal entities is found in Claramunt, Christophe 

and Theriault, Marius.  Toward Semantics for Modelling Spatio-Temporal Processes 

http://www.people.fas.harvard.edu/%7Echgis/work/design/chinastdb_1210.doc
http://dbr.nu/data/pubs/papers/lex_may00.pdf
http://fas.harvard.edu/%7Echgis/work/docs/fudan_staff.jpg
http://fas.harvard.edu/%7Echgis/data/pubs/Bol_Hartwell_GIS.doc
http://fas.harvard.edu/%7Echgis/data/hartwell/
http://qing.ucdavis.edu/
http://gisstore.esri.com/acb/showdetl.cfm?&DID=6&Product_ID=309&CATID=15


http://fas.harvard.edu/~chgis 

Within GIS, in “Advances in GIS Research II,” Edited by M.J. Kraak and M. Molenaar.  
London: Taylor & Francis, 1997. 

 
8. The classic treatment of space-time composite modeling and opimizing spatio-

temporal databases is found in Langran, Gail.  “Time in Geographic Information 
Systems.”  London:  Taylor & Francis, 1992.  (See especially Chapters 3 and 4, pp 
27-67.) 

 
9. For an overview of temporal modeling see: Johnson, Ian.  “Mapping the Fourth 

Dimension.”  Sep 1997. 
http://www.archaeology.usyd.edu.au/research/time_map/documentation/caa_1997/i
ndex.html The temporal boundary problem is discussed in detail in Langran, ibid, 
pp 27-44. 

 
10.  Special thanks to Miho Nakanishi for devising this code. 

 
11.  TimeMap Software, developed by Ian Johnson, Archeological Computing Laboratory, 

University of Sydney, is described at: 
http://www.archaeology.usyd.edu.au/research/time_map/ 

 
 

 

http://www.archaeology.usyd.edu.au/research/time_map/documentation/caa_1997/index.html
http://www.archaeology.usyd.edu.au/research/time_map/documentation/caa_1997/index.html
http://www.archaeology.usyd.edu.au/research/time_map/

	China Historical GIS Spatio-Temporal Database and Web Implementation
	Merrick Lex Berman  -  August 2001
	Figure 1:  Administrative Hierarchy Attributes for a single record
	Figure 2:  Replacing redundant entries with adminstrative codes
	Figure 3: Example of adminstrative codes for Dali Xian, during the Qing Dynasty
	Figure 4: Parallel administrative hierarchy
	FIGURE 5: Alternate Hierarchy Table linking units in parallel hierarchies
	Figure 6:  Creating new levels in the administrative hierarchy forces renumbering



